Regularity for Suitable Weak Solutions to the Navier-Stokes Equations in Critical Morrey Spaces

نویسنده

  • G. Seregin
چکیده

A class of sufficient conditions of local regularity for suitable weak solutions to the nonstationary three-dimensional Navier-Stokes equations are discussed. The corresponding results are formulated in terms of functionals which are invariant with respect to the Navier-Stokes equations scaling. The famous Caffarelli-Kohn-Nirenberg condition is contained in that class as a particular case. 1991 Mathematical subject classification (Amer. Math. Soc.): 35K, 76D.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimates of suitable weak solutions to the Navier-Stokes equations in critical Morrey spaces

We prove some estimates for suitable weak solutions to the nonstationary three-dimensional Navier-Stokes equations under assumptions that certain invariant functionals of the velocity field are bounded. 1991 Mathematical subject classification (Amer. Math. Soc.): 35K, 76D.

متن کامل

Regularity of Leray-hopf Solutions to Navier-stokes Equations (1)-critical Regularity in Weak Spaces

We consider the regularity of Leray-Hopf solutions to Navier-Stokes equations on critical case u ∈ L 2 w (0, T ; L ∞ (R 3)). By a new embedding inequality in Lorentz space we proved that if u L 2 w (0,T ;L ∞ (R 3)) is small then the Leray-Hopf solutions are regular. Particularly, an open problem proposed in [7] was solved.

متن کامل

Regularity of Leray-hopf Solutions to Navier-stokes Equations (i)-critical Regularity in Weak Spaces

We consider the regularity of Leray-Hopf solutions to impressible Navier-Stokes equations on critical case u ∈ L 2 w (0, T ; L ∞ (R 3)). By a new embedding inequality in Lorentz space we prove that if u L 2 w (0,T ;L ∞ (R 3)) is small then as a Leray-Hopf solution u is regular. Particularly, an open problem proposed in [8] is solved.

متن کامل

Regularity of Leray-hopf Solutions to Navier-stokes Equations (i)-critical Interior Regularity in Weak Spaces

We consider the interior regularity of Leray-Hopf solutions to Navier-Stokes equations on critical case u ∈ L 2 w (0, T ; L ∞ (R 3)) was obtained. By a new embedding inequality in Lorentz space we proved that if u L 2 w (0,T ;L ∞ (R 3)) is small then the Leray-Hopf solutions are regular. Particularly, an open problem proposed in [KK] was solved.

متن کامل

Regularity Criteria in Weak Spaces for Navier-stokes Equations in R

In this paper we establish a Serrin type regularity criterion on the gradient of pressure in weak spaces for the Leray-Hopf weak solutions of the Navier-Stocks equations in R. It partly extends the results of Zhou[2] to L w spaces instead of L spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008